Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation
نویسندگان
چکیده
Although numerous studies have been conducted on handwritten recognition, there is little and non-optimal research Javanese script recognition due to its limitation basic characters. Therefore, this proposes the design of a Script method based twelve layers deep convolutional neural network (DCNN), consisting four convolutions, two pooling, five fully connected (FC) layers, with SoftMax classifiers. Five FC were proposed in conduct learning process stages achieve better outcomes. Due limited number images dataset, an augmentation needed improve performance. This obtained 99.65% accuracy using seven types geometric DCNN model for 120 character classes. It consists 20 characters plus 100 others from compound vowels
منابع مشابه
Handwritten Javanese Character Recognition Using Several Artificial Neural Network Methods
Javanese characters are traditional characters that are used to write the Javanese language. The Javanese language is a language used by many people on the island of Java, Indonesia. The use of Javanese characters is diminishing more and more because of the difficulty of studying the Javanese characters themselves. The Javanese character set consists of basic characters, numbers, complementary ...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملData Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics
D eep learning methods are used on spectroscopic data to predict drug content in tablets from near infrared (NIR) spectra. Using convolutional neural networks (CNNs), features are extracted from the spectroscopic data. Extended multiplicative scatter correction (EMSC) and a novel spectral data augmentation method are benchmarked as preprocessing steps. The learned models perform better or on pa...
متن کاملDeep Convolutional Network for Handwritten Chinese Character Recognition
In this project we explored the performance of deep convolutional neural network on recognizing handwritten Chinese characters. We ran experiments on a 200-class and a 3755-class dataset using convolutional networks with different depth and filter numbers. Experimental results show that deeper network with larger filter numbers give better test accuracy. We also provide a visualization of the l...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IAES International Journal of Artificial Intelligence
سال: 2023
ISSN: ['2089-4872', '2252-8938']
DOI: https://doi.org/10.11591/ijai.v12.i3.pp1448-1458